Daytime azimuthal variation of longwave radiance from CERES-SSF

D. R. Doelling, A. V. Gambheer, M. M. Khaiyher AS&M, Inc.

P. Minnis
NASA LaRC

CERES STM, Brussels, Belgium January 2002

Forward scatter
Colder temperature measured

Back scatter
Warmer temperature measured

GOES-8 MAS Comparisons

- October 21, 1995, A=Ozarks, B=Louisiana
- MAS pixels (50m) averaged into GOES-8 pixel (4km)
 - 4500 MAS to 1 GOES-8 pixel
 - MAS flight track 8 GOES-8 pixels wide
 - ER-2 (20 km altitude)
- Perform correlated K's to remove MAS limb darkening
- Inter-calibrate GOES-8 and MAS 11um temperatures over the Gulf of Mexico
- Compute brightness temperature difference (GOES-8 -MAS)

OZARKS

Region A (Rolling Land, Julian Day 95294, ~1665 UTC)

Brightness Temperature Differences (GOES-8 - MAS)

LOUISIANA

Region B (Flat Land, Julian Day 95294, ~1830 UTC)

Brightness Temperature Differences (GOES-8 - MAS)

Helicopter LW ADMs

- CARE, August 1998, morning data
- Fly identical azimuthal flight pattern for every SZA
 - Point radiometer instrument at same ground spot
- Perform correlated Ks to remove limb darkening
 - Flight level 300 meters
- Milo field characteristics
 - 1.2 meters tall crop
 - 0.5 meter spacing between crop rows

CARE BRDF - Milo

Helicopter ADM conclusions

- Azimuthal signal increases as solar heating increases or with lower solar zenith angles
- Forward scatter is colder relative to back scatter

TRMM CERES-SSF

- January August 1998, RAPS (10km nadir), (edition 2A)
- 9 azimuth bins, every 20°,
 - 1=10° (forward scatter)
- 5 view angle bins, every 15°
 - 1=near nadir
- 4 cloud amount bins, 0-5, 5-50, 50-95, 95-100%,
 - 1=clear, 2=partly cloudy, 3=mostly cloudy, 4=overcast
 - Cloud amount determined from VIRS cloud mask
- 4 local time bins (LCT bin)
 - 1=sunrise, 2=before noon, 3=afternoon, 4=sunset

Regional Multi-angle sampling Conclusions

• TRMM, 35° precessing orbit

- 0 - 30°N	30°N - 37°N	0° - 37°N
- 70%	30%	100% pixels
- 83%	17%	100% area

- In the tropics only a few days are sampled out of 80 RAPS days
- In the tropics the dominant day has over 50% of the pixels out of < 50 pixels
- Regional angular models not possible with TRMM CERES SSF data set

Topography Bins

- ETOPO5 data base
- 5' minute resolution (~10 km)
- Take standard deviation of 3x3 elevations

•	0-10 meters	low variability	45% of all land
•	10-50 meters	medium variability	35%
•	>50 meters	high variability	25%

ADM plots

- For radiances, subtract radiances from the mean view angle radiance
- For fluxes, subtract fluxes from the mean
 - CERES limb darkening models applied (edition 2a)
- To convert longwave radiances into temperatures
 - $T(K^{\circ}) = (R/)^{1/4}$, where $R = rad(Wm^{-2} sr^{-1})$
- To convert window radiances into temperatures
 - Use plank function with central wavelength of 10.0µm
 - Use 3.7µm bandwidth
- For temperatures, use radiance approach

CLEAR LW (REL) RAD in Wm⁻² sr⁻¹ AZN SUMMED LW (REL) FLUX in Wm-2 PIX # 3.0×10⁴ Low surface variability 2.0×104 0 1.0×10⁴ 2 3 5 2 5 2 3 5 4 3 4 4 3.0×10⁴ Medium surface variability 2.0×104 1.0×10⁴ -8 2 3 2 3 2 5 3 3.0×10⁴ 8 High surface variability 2.0×104 0 1.0×10⁴ LCT BIN I 2 5 5 2 LCT BIN III 3 4 2 3 5 VIEW ZENITH BINS Lat. -30 to +30

Topography conclusions

- Forward scatter is colder than backscatter IR radiation
- Azimuthal signal increases with increased surface roughness
- Azimuthal signal greater near noon
- Up to 2.5° K longwave and 5.0° K window temperature difference between backward and forward scattering
- Greater limb darkening near noon

IGBP Bins

- 6 IGBP bins
- 1 all forests
- 2 open and closed shrublands
- 3 all savannas and grasslands
- 4 all croplands
- 5 bare soil and rocks
- 6 water bodies

IGBP conclusions

- Clear ocean has no azimuthal signal
- Forested, Shrublands, and Savannas have a greater signal than croplands or bare soil
 - Up to 4° K window and 2° K longwave temperature difference between backward and forward scattering
- Partly and mostly cloudy scenes retain some of their azimuthal signature
- Window and longwave radiances have the same features